Towards identity anonymization in social networks

نویسندگان

  • Kenneth L. Clarkson
  • Kun Liu
  • Evimaria Terzi
چکیده

Social networks, online communities, peer-to-peer file sharing and telecommunication systems can be modeled as complex graphs. These graphs are of significant importance in various application domains such as marketing, psychology, epidemiology and homeland security. The management and analysis of these graphs is a recurring theme with increasing interest in the database, data mining and theory communities. Past and ongoing research in this direction has revealed interesting properties of the data and presented efficient ways of maintaining, querying and updating them. The proliferation of social networks has inevitably raised issues related to privacy preserving data analysis as illustrated in recent papers: e.g., [2, 11, 23, 18, 22]. Compared with existing anonymization and perturbation techniques of tabular data (see, e.g., the survey book [1]), working with graphs and networks is much more challenging. Some aspects of graph data that enhance the challenge are the following:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

Hiding Information in Social Networks from De-anonymization Attacks by Using Identity Separation

Social networks allow their users to mark their profile attributes, relationships as private in order to guarantee privacy, although private information get occasionally published within sanitized datasets offered to third parties, such as business partners. Today, powerful deanonymization attacks exist that enable the finding of corresponding nodes within these datasets and public network data...

متن کامل

Social Network De-Anonymization and Privacy Inference with Knowledge Graph Model

Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...

متن کامل

Utility-Oriented K-Anonymization on Social Networks

“Identity disclosure” problem on publishing social network data has gained intensive focus from academia. Existing k-anonymization algorithms on social network may result in nontrivial utility loss. The reason is that the number of the edges modified when anonymizing the social network is the only metric to evaluate utility loss, not considering the fact that different edge modifications have d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010